Research Article
BibTex RIS Cite

Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications

Year 2024, Volume: 37 Issue: 2, 774 - 791
https://doi.org/10.35378/gujs.1232730

Abstract

Reflective polarization conversions with a simplistic design of an ultrathin, single-layered, and multi-functional anisotropic metasurface as a polarization converter is utilized for Ku- and K-band applications. The designs with two substrate thicknesses (0.095λ0 and 0.069λ0, respectively) are capable of a cross-polarization converter (CPC) and a linear-to-circular (LTC) polarization conversion. The design with 0.095λ0 thickness achieves a CPC between 17.96 and 26.90GHz with the efficiency of more than 90% and a relative bandwidth of 40% under normal incidence. It maintains angular stability by altering the oblique incidence angles up to 300 with greater than 80% of the PCR in the K-band. Meanwhile, an LTC in two frequency bands, 10.30-10.53GHz and 28.65-29.70GHz, is also numerically demonstrated. The second design with 0.069 λ0 thickness provides a CPC above the PCR value of 87% in the frequency range from 10.46-23.05GHz (covering the entire Ku- and part of the K-band) with angular stability of 40 above the PCR value of 80%. In the meantime, an LTC with relative bandwidth of 75% in the frequency range from 9.53-9.79&24.74-25.27GHz is numerically revealed. These polarization converters exhibit relatively good performances of facile structure and multi-functional properties, which can be useful in Ku- and K-band applications.

References

  • [1] Ren, J., Jiang, W., Zhang, K., Gong, S., “A high-gain circularly polarized fabry-perot antenna with wideband Low-RCS property”, IEEE Antennas and Wireless Propagation Letters, 17(5): 853–856, (2018).
  • [2] Zhang, L., Liu, C., Ni, C., Kong, M., Wu, X., “Low-RCS, Circular Polarization, and High-Gain Broadband Antenna Based on Mirror Polarization Conversion Metasurfaces”, International Journal of Antennas and Propagation, 2019: 1-8, (2019).
  • [3] Veysi, M., Boyraz, O., Capolino, F., “A thin anisotropic metasurface for simultaneous light focusing and polarization manipulation”, Journal of the Optical Society of America B, 32(2): 318-323, (2015).
  • [4] Coskun, A., Hasar, U.C., Ozmen, A., Ertugrul, M., Coskun, A., Hasar, U.C., Ozmen, A., Ertugrul, M., “Easy-to-Implement Ultra-Thin, Wide-Band, and Multi-Functional Polarization Converter for K and Ka Band Applications”, Advanced Theory and Theory Simulations, 5(4): 2100543, (2022).
  • [5] Yuan, Y., Zhang, K., Ratni, B., Song, Q., Ding, X., Wu, Q., Burokur, S.N., Genevet, P., “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces”, Nature Communications, 11(1): 1–9, (2020).
  • [6] Li, S.J., Cui, T.J., Li, Y.B., Zhang, C., Li, R.Q., Cao, X.Y., Guo, Z.X., “Multifunctional and Multiband Fractal Metasurface Based on Inter-Metamolecular Coupling Interaction”, Advanced Theory and Simulations, 2(8): 1900105, (2019).
  • [7] Khan, M.I., Khalid, Z., Tahir, F.A., “Linear and circular-polarization conversion in X-band using anisotropic metasurface”, Scientific Reports, 9(1): 1–11, (2019).
  • [8] Ako, R.T., Lee, W.S.L., Bhaskaran, M., Sriram, S., Withayachumnankul, W., “Broadband and wide-angle reflective linear polarization converter for terahertz waves”, APL Photonics, 4(9): 096104, (2019).
  • [9] Nguyen, T.K.T., Nguyen, T.M., Nguyen, H.Q., Cao, T.N., Le, D.T., Bui, X.K., Bui, S.T., Truong, C.L., Vu, D.L., Nguyen, T.Q.H., “Simple design of efficient broadband multifunctional polarization converter for X-band applications”, Scientific Reports, 11(1): 1–12, (2021).
  • [10] Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., Wang, Z., “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves”, Applied Physics A, 125(2): 1–8, (2019).
  • [11] Pouyanfar, N., Nourinia, J., Ghobadi, C., “Low-profile and high efficient artificial magnetic conductor metasurface for X-band applications”, In 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 1-4, (2020).
  • [12] Khan, M.I., Tahir, F. A., “An angularly stable dual-broadband anisotropic cross polarization conversion metasurface”, Journal of Applied Physics, 122(5): 053103, (2017).
  • [13] Wang, H. Bin, Cheng, Y.J., Chen, Z.N., “Wideband and Wide-Angle Single-Layered-Substrate Linear-to-Circular Polarization Metasurface Converter”, IEEE Transactions on Antennas Propagation, 68(2): 1186–1191, (2020).
  • [14] Hu, Y., Ou, X., Zeng, T., Lai, J., Zhang, J., Li, X., Luo, X., Li, L., Fan, F., Duan, H., “Electrically Tunable Multifunctional Polarization-Dependent Metasurfaces Integrated with Liquid Crystals in the Visible Region”, Nano Letters, 21(11): 4554–4562, (2021).
  • [15] Mao, C., Yang, Y., He, X., Zheng, J., Zhou, C., “Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface”, Applied Physics A, 123(12): 1–6, (2017).
  • [16] Li, Y., Wang, Y., Cao, Q., “A reflective multilayer polarization converter with switchable frequency band”, Journal of Applied Physics, 127(4): 045301, (2020).
  • [17] Ako, R.T., Lee, W.S.L., Atakaramians, S., Bhaskaran, M., Sriram, S., Withayachumnankul, W., “Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves”, APL Photonics, 5(4): 046101, (2020).
  • [18] Youn, Y., Hong, W., “Planar Dual-Band Linear to Circular Polarization Converter using Radial-Shape Multi-Layer FSS”, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 1465–1466, (2018).
  • [19] Khan, M.I., Tahir, F.A., “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface”, Scientific Reports, 7(1): 1–9, (2017).
  • [20] Xu, J., Li, R., Wang, S., Han, A.T., “Ultra-broadband linear polarization converter based on anisotropic metasurface”, Optics Express, 26(20): 26235-26241, (2018).
  • [21] Loncar, J., Grbic, A., Hrabar, S., “A Reflective Polarization Converting Metasurface at X -Band Frequencies”, IEEE Transactions on Antennas Propagation, 66(6): 3213–3218, (2018).
  • [22] Grady, N.K., Heyes, J.E., Chowdhury, D.R., Zeng, Y., Reiten, M.T., Azad, A.K., Taylor, A.J., Dalvit, D.A.R., Chen, H.T., “Terahertz metamaterials for linear polarization conversion and anomalous refraction”, Science, 340(6138): 1304–1307, (2013).
  • [23] Zhang, R., You, B., Wang, S., Han, K., Han, K., Shen, X., Wang, W., Wang, W., “Broadband and switchable terahertz polarization converter based on graphene metasurfaces”, Optics Express, 29(16): 24804-24815, (2021).
  • [24] Xu, Y., Xu, Q., Zhang, X., Feng, X., Lu, Y., Zhang, X., Kang, M., Han, J., Zhang, W., Xu, Y., Xu, Q., Zhang, X., Feng, X., Lu, Y., Han, J., Kang, M., Zhang, W., “Stereo Metasurfaces for Efficient and Broadband Terahertz Polarization Conversion”, Advanced Functional Materials, 32(44): 2207269, (2022).
  • [25] Zou, M., Su, M., Yu, H., “Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial”, Optical Materials, 107: 110062, (2020).
  • [26] Chieh Wu, P., Sokhoyan, R., Kafaie Shirmanesh, G., Cheng, W.-H., Atwater, H.A., Wu, P.C., Sokhoyan, R., Shirmanesh, G.K., Cheng, W., Atwater Thomas J Watson, H.A., Atwater, H.A., “Near-Infrared Active Metasurface for Dynamic Polarization Conversion”, Advanced Optical Materials, 9(16): 2100230, (2021).
  • [27] Hassanfiroozi, A., Huang, P.-S., Huang, S.-H., Lin, K.-I., Lin, Y.-T., Chien, C.-F., Shi, Y., Lee, W.-J., Wu, P.C., Hassanfiroozi, A., Huang, P.-S., Huang, S.-H., Lin, Y.-T., Chien, C.-F., Wu, P.C., Lin, K.-I., Shi, Y., Lee, W.-J., “A Toroidal-Fano-Resonant Metasurface with Optimal Cross-Polarization Efficiency and Switchable Nonlinearity in the Near-Infrared”, Advanced Optical Materials, 9(21): 2101007, (2021).
  • [28] Nilotpal, Nama, L., Bhattacharyya, S., Chakrabarti, P., “A metasurface-based broadband quasi nondispersive cross polarization converter for far infrared region”, International Journal of RF Microwave Computer-Aided Engineering, 29(10): e21889, (2019).
  • [29] Ding, F., Tang, S., Bozhevolnyi, S.I., “Recent Advances in Polarization-Encoded Optical Metasurfaces”, Advanced Photonics Research, 2(6): 2000173, (2021).
  • [30] Wang, S.Y., Bi, J.D., Liu, W., Geyi, W., Gao, S., “Polarization-insensitive cross-polarization converter”, IEEE Transactions on Antennas Propagation, 69(8): 4670–4680, (2021).
  • [31] Cui, Z., Xiao, Z., Chen, M., Lv, F., Xu, Q., “A Transmissive Linear Polarization and Circular Polarization Cross Polarization Converter Based on All-Dielectric Metasurface”, Journal of Electronics Materials, 50(7), 4207–4214, (2021).
  • [32] Ahmad, T., Rahim, A.A., Bilal, R.M.H., Noor, A., Maab, H., Naveed, M.A., Madni, A., Ali, M.M., Saeed, M.A., “Ultrawideband Cross-Polarization Converter Using Anisotropic Reflective Metasurface”, Electronics, 11(3): 487, (2022).
  • [33] Pouyanfar, N., Nourinia, J., Ghobadi, C., “Multiband and multifunctional polarization converter using an asymmetric metasurface”, Scientific Reports, 11(1): 1–15, (2021).
  • [34] Guo, Y., Xu, J., Lan, C., Bi, K., “Broadband and High-efficiency Linear Polarization Converter Based on Reflective Metasurface”, Engineered Science, 14(2): 39–45, (2021).
  • [35] Zheng, Q., Guo, C., Ding, J., “Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion”, IEEE Antennas Wireless Propagation Letters, 17(8): 1459–1463, (2018).
  • [36] Sun, S., Jiang, W., Gong, S., Hong, T., “Reconfigurable Linear-to-Linear Polarization Conversion Metasurface Based on PIN Diodes”, IEEE Antennas Wireless Propagation Letters., 17(9): 1722–1726, (2018).
  • [37] Li, Z.Y., Li, S.J., Han, B.W., Huang, G.S., Guo, Z.X., Cao, X.Y., “Quad-Band Transmissive Metasurface with Linear to Dual-Circular Polarization Conversion Simultaneously”, Advanced Theory and Simulations, 4(8), 2100117, (2021).
  • [38] Dutta, R., Ghosh, J., Yang, Z., Zhang, X., “Multi-band multi-functional metasurface-based reflective polarization converter for linear and circular polarizations”, IEEE Access, 9: 152738–152748, (2021).
  • [39] Qiao, Q., Qiao, Q., Wang, Y., Wang, Y., Wang, Y., Yang, G., Yang, G., Yang, G., Fu, Y., Fu, Y., Liu, Y., Liu, Y., “Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array”, Optical Materials Express, 11(9): 2952-2965, (2021).
  • [40] Dias, L.F.F., Jouvaud, C., Delaveaud, C., Aubert, H., “Polarization Conversion from a Two-Port Impedance Loaded Tag”, In 2022 16th European Conference on Antennas and Propagation, EuCAP, 1-5, (2022).
  • [41] Ullah, S., Abdullah, Khan, B., Ullah, R., Ali, H., Kamal, B., “Asymmetric polarization converting metasurface for microwave applications”, Optical Materials Express, 12(9): 3403-3415, (2022).
  • [42] Couto, M.M., Silva, M.W.B., Campos, A.L.P.S., “A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface”, Journal of Electromagnetic Waves and Applications, 35(12): 1652–1662, (2021).
  • [43] Mao, C., Yang, Y., He, X., Zheng, J., Zhou, C., “Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface”, Applied Physics A, 123(12): 1–6, (2017).
  • [44] Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., Wang, Z., “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves”, Applied Physics A, 125(2): 1–8, (2019).
  • [45] Khan, M.I., Khalid, Z., Tahir, F.A., “Linear and circular-polarization conversion in X-band using anisotropic metasurface”, Scientific Reports, 9(1): 1–11, (2019).
  • [46] Deng, G., Yu, Z., Yin, Z., Yang, J., Li, Y., “A miniaturized and wide-angle 3D metamaterial for reflective polarization conversion”, Optical Materials, 133: 113017, (2022).
  • [47] Nguyen, T.Q.H., Nguyen, T.K.T., Nguyen, T.Q.M., Cao, T.N., Phan, H.L., Luong, N.M., Le, D.T., Bui, X.K., Truong, C.L., Vu, D.L., “Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications”, Optics Communications, 486: 126773, (2021).
Year 2024, Volume: 37 Issue: 2, 774 - 791
https://doi.org/10.35378/gujs.1232730

Abstract

References

  • [1] Ren, J., Jiang, W., Zhang, K., Gong, S., “A high-gain circularly polarized fabry-perot antenna with wideband Low-RCS property”, IEEE Antennas and Wireless Propagation Letters, 17(5): 853–856, (2018).
  • [2] Zhang, L., Liu, C., Ni, C., Kong, M., Wu, X., “Low-RCS, Circular Polarization, and High-Gain Broadband Antenna Based on Mirror Polarization Conversion Metasurfaces”, International Journal of Antennas and Propagation, 2019: 1-8, (2019).
  • [3] Veysi, M., Boyraz, O., Capolino, F., “A thin anisotropic metasurface for simultaneous light focusing and polarization manipulation”, Journal of the Optical Society of America B, 32(2): 318-323, (2015).
  • [4] Coskun, A., Hasar, U.C., Ozmen, A., Ertugrul, M., Coskun, A., Hasar, U.C., Ozmen, A., Ertugrul, M., “Easy-to-Implement Ultra-Thin, Wide-Band, and Multi-Functional Polarization Converter for K and Ka Band Applications”, Advanced Theory and Theory Simulations, 5(4): 2100543, (2022).
  • [5] Yuan, Y., Zhang, K., Ratni, B., Song, Q., Ding, X., Wu, Q., Burokur, S.N., Genevet, P., “Independent phase modulation for quadruplex polarization channels enabled by chirality-assisted geometric-phase metasurfaces”, Nature Communications, 11(1): 1–9, (2020).
  • [6] Li, S.J., Cui, T.J., Li, Y.B., Zhang, C., Li, R.Q., Cao, X.Y., Guo, Z.X., “Multifunctional and Multiband Fractal Metasurface Based on Inter-Metamolecular Coupling Interaction”, Advanced Theory and Simulations, 2(8): 1900105, (2019).
  • [7] Khan, M.I., Khalid, Z., Tahir, F.A., “Linear and circular-polarization conversion in X-band using anisotropic metasurface”, Scientific Reports, 9(1): 1–11, (2019).
  • [8] Ako, R.T., Lee, W.S.L., Bhaskaran, M., Sriram, S., Withayachumnankul, W., “Broadband and wide-angle reflective linear polarization converter for terahertz waves”, APL Photonics, 4(9): 096104, (2019).
  • [9] Nguyen, T.K.T., Nguyen, T.M., Nguyen, H.Q., Cao, T.N., Le, D.T., Bui, X.K., Bui, S.T., Truong, C.L., Vu, D.L., Nguyen, T.Q.H., “Simple design of efficient broadband multifunctional polarization converter for X-band applications”, Scientific Reports, 11(1): 1–12, (2021).
  • [10] Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., Wang, Z., “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves”, Applied Physics A, 125(2): 1–8, (2019).
  • [11] Pouyanfar, N., Nourinia, J., Ghobadi, C., “Low-profile and high efficient artificial magnetic conductor metasurface for X-band applications”, In 2020 28th Iranian Conference on Electrical Engineering (ICEE), Tabriz, Iran, 1-4, (2020).
  • [12] Khan, M.I., Tahir, F. A., “An angularly stable dual-broadband anisotropic cross polarization conversion metasurface”, Journal of Applied Physics, 122(5): 053103, (2017).
  • [13] Wang, H. Bin, Cheng, Y.J., Chen, Z.N., “Wideband and Wide-Angle Single-Layered-Substrate Linear-to-Circular Polarization Metasurface Converter”, IEEE Transactions on Antennas Propagation, 68(2): 1186–1191, (2020).
  • [14] Hu, Y., Ou, X., Zeng, T., Lai, J., Zhang, J., Li, X., Luo, X., Li, L., Fan, F., Duan, H., “Electrically Tunable Multifunctional Polarization-Dependent Metasurfaces Integrated with Liquid Crystals in the Visible Region”, Nano Letters, 21(11): 4554–4562, (2021).
  • [15] Mao, C., Yang, Y., He, X., Zheng, J., Zhou, C., “Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface”, Applied Physics A, 123(12): 1–6, (2017).
  • [16] Li, Y., Wang, Y., Cao, Q., “A reflective multilayer polarization converter with switchable frequency band”, Journal of Applied Physics, 127(4): 045301, (2020).
  • [17] Ako, R.T., Lee, W.S.L., Atakaramians, S., Bhaskaran, M., Sriram, S., Withayachumnankul, W., “Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves”, APL Photonics, 5(4): 046101, (2020).
  • [18] Youn, Y., Hong, W., “Planar Dual-Band Linear to Circular Polarization Converter using Radial-Shape Multi-Layer FSS”, 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, Boston, MA, USA, 1465–1466, (2018).
  • [19] Khan, M.I., Tahir, F.A., “Simultaneous quarter-wave plate and half-mirror operation through a highly flexible single layer anisotropic metasurface”, Scientific Reports, 7(1): 1–9, (2017).
  • [20] Xu, J., Li, R., Wang, S., Han, A.T., “Ultra-broadband linear polarization converter based on anisotropic metasurface”, Optics Express, 26(20): 26235-26241, (2018).
  • [21] Loncar, J., Grbic, A., Hrabar, S., “A Reflective Polarization Converting Metasurface at X -Band Frequencies”, IEEE Transactions on Antennas Propagation, 66(6): 3213–3218, (2018).
  • [22] Grady, N.K., Heyes, J.E., Chowdhury, D.R., Zeng, Y., Reiten, M.T., Azad, A.K., Taylor, A.J., Dalvit, D.A.R., Chen, H.T., “Terahertz metamaterials for linear polarization conversion and anomalous refraction”, Science, 340(6138): 1304–1307, (2013).
  • [23] Zhang, R., You, B., Wang, S., Han, K., Han, K., Shen, X., Wang, W., Wang, W., “Broadband and switchable terahertz polarization converter based on graphene metasurfaces”, Optics Express, 29(16): 24804-24815, (2021).
  • [24] Xu, Y., Xu, Q., Zhang, X., Feng, X., Lu, Y., Zhang, X., Kang, M., Han, J., Zhang, W., Xu, Y., Xu, Q., Zhang, X., Feng, X., Lu, Y., Han, J., Kang, M., Zhang, W., “Stereo Metasurfaces for Efficient and Broadband Terahertz Polarization Conversion”, Advanced Functional Materials, 32(44): 2207269, (2022).
  • [25] Zou, M., Su, M., Yu, H., “Ultra-broadband and wide-angle terahertz polarization converter based on symmetrical anchor-shaped metamaterial”, Optical Materials, 107: 110062, (2020).
  • [26] Chieh Wu, P., Sokhoyan, R., Kafaie Shirmanesh, G., Cheng, W.-H., Atwater, H.A., Wu, P.C., Sokhoyan, R., Shirmanesh, G.K., Cheng, W., Atwater Thomas J Watson, H.A., Atwater, H.A., “Near-Infrared Active Metasurface for Dynamic Polarization Conversion”, Advanced Optical Materials, 9(16): 2100230, (2021).
  • [27] Hassanfiroozi, A., Huang, P.-S., Huang, S.-H., Lin, K.-I., Lin, Y.-T., Chien, C.-F., Shi, Y., Lee, W.-J., Wu, P.C., Hassanfiroozi, A., Huang, P.-S., Huang, S.-H., Lin, Y.-T., Chien, C.-F., Wu, P.C., Lin, K.-I., Shi, Y., Lee, W.-J., “A Toroidal-Fano-Resonant Metasurface with Optimal Cross-Polarization Efficiency and Switchable Nonlinearity in the Near-Infrared”, Advanced Optical Materials, 9(21): 2101007, (2021).
  • [28] Nilotpal, Nama, L., Bhattacharyya, S., Chakrabarti, P., “A metasurface-based broadband quasi nondispersive cross polarization converter for far infrared region”, International Journal of RF Microwave Computer-Aided Engineering, 29(10): e21889, (2019).
  • [29] Ding, F., Tang, S., Bozhevolnyi, S.I., “Recent Advances in Polarization-Encoded Optical Metasurfaces”, Advanced Photonics Research, 2(6): 2000173, (2021).
  • [30] Wang, S.Y., Bi, J.D., Liu, W., Geyi, W., Gao, S., “Polarization-insensitive cross-polarization converter”, IEEE Transactions on Antennas Propagation, 69(8): 4670–4680, (2021).
  • [31] Cui, Z., Xiao, Z., Chen, M., Lv, F., Xu, Q., “A Transmissive Linear Polarization and Circular Polarization Cross Polarization Converter Based on All-Dielectric Metasurface”, Journal of Electronics Materials, 50(7), 4207–4214, (2021).
  • [32] Ahmad, T., Rahim, A.A., Bilal, R.M.H., Noor, A., Maab, H., Naveed, M.A., Madni, A., Ali, M.M., Saeed, M.A., “Ultrawideband Cross-Polarization Converter Using Anisotropic Reflective Metasurface”, Electronics, 11(3): 487, (2022).
  • [33] Pouyanfar, N., Nourinia, J., Ghobadi, C., “Multiband and multifunctional polarization converter using an asymmetric metasurface”, Scientific Reports, 11(1): 1–15, (2021).
  • [34] Guo, Y., Xu, J., Lan, C., Bi, K., “Broadband and High-efficiency Linear Polarization Converter Based on Reflective Metasurface”, Engineered Science, 14(2): 39–45, (2021).
  • [35] Zheng, Q., Guo, C., Ding, J., “Wideband metasurface-based reflective polarization converter for linear-to-linear and linear-to-circular polarization conversion”, IEEE Antennas Wireless Propagation Letters, 17(8): 1459–1463, (2018).
  • [36] Sun, S., Jiang, W., Gong, S., Hong, T., “Reconfigurable Linear-to-Linear Polarization Conversion Metasurface Based on PIN Diodes”, IEEE Antennas Wireless Propagation Letters., 17(9): 1722–1726, (2018).
  • [37] Li, Z.Y., Li, S.J., Han, B.W., Huang, G.S., Guo, Z.X., Cao, X.Y., “Quad-Band Transmissive Metasurface with Linear to Dual-Circular Polarization Conversion Simultaneously”, Advanced Theory and Simulations, 4(8), 2100117, (2021).
  • [38] Dutta, R., Ghosh, J., Yang, Z., Zhang, X., “Multi-band multi-functional metasurface-based reflective polarization converter for linear and circular polarizations”, IEEE Access, 9: 152738–152748, (2021).
  • [39] Qiao, Q., Qiao, Q., Wang, Y., Wang, Y., Wang, Y., Yang, G., Yang, G., Yang, G., Fu, Y., Fu, Y., Liu, Y., Liu, Y., “Broadband of linear-to-linear and double-band of linear-to-circular polarization converter based on a graphene sheet with a π-shaped hollow array”, Optical Materials Express, 11(9): 2952-2965, (2021).
  • [40] Dias, L.F.F., Jouvaud, C., Delaveaud, C., Aubert, H., “Polarization Conversion from a Two-Port Impedance Loaded Tag”, In 2022 16th European Conference on Antennas and Propagation, EuCAP, 1-5, (2022).
  • [41] Ullah, S., Abdullah, Khan, B., Ullah, R., Ali, H., Kamal, B., “Asymmetric polarization converting metasurface for microwave applications”, Optical Materials Express, 12(9): 3403-3415, (2022).
  • [42] Couto, M.M., Silva, M.W.B., Campos, A.L.P.S., “A novel ultra-wideband reflective cross-polarization converter based on anisotropic metasurface”, Journal of Electromagnetic Waves and Applications, 35(12): 1652–1662, (2021).
  • [43] Mao, C., Yang, Y., He, X., Zheng, J., Zhou, C., “Broadband reflective multi-polarization converter based on single-layer double-L-shaped metasurface”, Applied Physics A, 123(12): 1–6, (2017).
  • [44] Lin, B., Guo, J., Lv, L., Wu, J., Ma, Y., Liu, B., Wang, Z., “Ultra-wideband and high-efficiency reflective polarization converter for both linear and circular polarized waves”, Applied Physics A, 125(2): 1–8, (2019).
  • [45] Khan, M.I., Khalid, Z., Tahir, F.A., “Linear and circular-polarization conversion in X-band using anisotropic metasurface”, Scientific Reports, 9(1): 1–11, (2019).
  • [46] Deng, G., Yu, Z., Yin, Z., Yang, J., Li, Y., “A miniaturized and wide-angle 3D metamaterial for reflective polarization conversion”, Optical Materials, 133: 113017, (2022).
  • [47] Nguyen, T.Q.H., Nguyen, T.K.T., Nguyen, T.Q.M., Cao, T.N., Phan, H.L., Luong, N.M., Le, D.T., Bui, X.K., Truong, C.L., Vu, D.L., “Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications”, Optics Communications, 486: 126773, (2021).
There are 47 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Electrical & Electronics Engineering
Authors

Ahmet Teber 0000-0002-7361-2302

Early Pub Date December 9, 2023
Publication Date
Published in Issue Year 2024 Volume: 37 Issue: 2

Cite

APA Teber, A. (n.d.). Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications. Gazi University Journal of Science, 37(2), 774-791. https://doi.org/10.35378/gujs.1232730
AMA Teber A. Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications. Gazi University Journal of Science. 37(2):774-791. doi:10.35378/gujs.1232730
Chicago Teber, Ahmet. “Reflective Polarization Conversion With Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications”. Gazi University Journal of Science 37, no. 2 n.d.: 774-91. https://doi.org/10.35378/gujs.1232730.
EndNote Teber A Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications. Gazi University Journal of Science 37 2 774–791.
IEEE A. Teber, “Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications”, Gazi University Journal of Science, vol. 37, no. 2, pp. 774–791, doi: 10.35378/gujs.1232730.
ISNAD Teber, Ahmet. “Reflective Polarization Conversion With Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications”. Gazi University Journal of Science 37/2 (n.d.), 774-791. https://doi.org/10.35378/gujs.1232730.
JAMA Teber A. Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications. Gazi University Journal of Science.;37:774–791.
MLA Teber, Ahmet. “Reflective Polarization Conversion With Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications”. Gazi University Journal of Science, vol. 37, no. 2, pp. 774-91, doi:10.35378/gujs.1232730.
Vancouver Teber A. Reflective Polarization Conversion with Multi-Functional, Ultrathin Metasurface for Ku- and K-Band Applications. Gazi University Journal of Science. 37(2):774-91.